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Lesson 1

The print() function
- Displays text on screen; e.g:

print("Hello, World!")

Errors
- Tell you that there is something wrong with the code you are trying to run.
- The line number tells you where in the code the error is and the ^ symbol indicates where the

problem is in that line.

Comments
- Use the # symbol to write a comment in code that will be ignored by Python, but that can help make

your code understandable; e.g.:
#This is a comment

Syntax
- The rules that govern the use of words, punctuation, and spaces in that language.
- E.g. code blocks in Python must be indented and function names are always followed by

parentheses.

Strings (data type)
- Any characters (letters, numbers, or punctuation, etc.) between single or double quotes; e.g.

"Hello, World!" or 'Hello, World!'



Lesson 2

Integers (data type)
- Integers are whole numbers. E.g. 42

Floats (data type)
- Floats are numbers with decimal points ("floating point numbers"). E.g. 42.33

The int() function
- Converts strings or floats into integers. E.g. int("42") or int(42.33) both output 42.

The float() function
- Converts strings or integers into floating point numbers.
- E.g. float("42") or float(42) or float(41 +1) all output the float 42.0.

The str() function
- Converts various data types into strings. E.g. str(42) outputs "42".

Variables
- Used to store data (whether number, string, or other data type) for reuse later.
- Assigned with a single equal sign; e.g.: variable = 42
- A variable name can be anything that is not a reserved word.
- The value of a variable can be changed.

Reserved words
- Certain words that have a predefined meaning within Python, like “print” in the print() function,

and that therefore cannot be used as variable names.

The input() function
- Allows the user to input data into the program.
- Adding a string between the parenthesis will display it before the input cell on screen; e.g.:

input("Please enter a number:")
- Can be assigned to a variable to use the user input later; e.g.:

user_input = input("Please enter a number:")
- Will always output the user input as a string (even if they input a number). This means you may

need to convert that input back into a number to work with it; e.g.:
int(input("Please enter a number:"))

Adding strings
- You can use the + sign to add strings together (including those stored in variables); e.g.:

print("Hello, " + user_name)



Lesson 3

Booleans (data type)
- A data type with two possible values: True or False.
- Must start with a capital letter.
- 0 or an empty string are considered “falsy”.
- 1 or any higher number, or a string with at least one character is “truthy”.

Comparison operators (>, <, ==, >=, <=, !=)
- Used to compare two pieces of data.
- E.g. whether a value is:

> (greater than)
< (less than)
== (equal to)
>= (greater than or equal to)
<= (less than or equal to)
!= (not equal to; this is called the bang operator)

- Can be used to compare numeric values or (in the case of == and !=) strings.

Logical operators (and, or, not)
- Used to combine or modify boolean values.
- Used in conditions, boolean expressions, and loops to check whether a and b are True, whether a

or b is True or whether something is not True; e.g.:
The following outputs True because both conditions are True:
x = 5
y = 10
result = (x > 0) and (y < 15)
The following outputs True because one of the two conditions is True:
x = 5
y = 10
result = (x > 0) or (y < 5)
The following outputs True because the condition is False:
x = 5
result = not (x < 0)

Membership operator (in)
- Used to check whether a certain value appears in a piece of data (e.g. a string or list); e.g:

"World" in "Hello, World!"
1 in [1, 2, 3]

Modulo operator (%)
- Used to return the remainder of a division; e.g.:

5 % 2 returns 1 (2 goes twice into 5 with a remainder of 1)
10 % 5 returns 0 (5 goes twice into 10 with a remainder of 0)



Lesson 4

Control flow
- The order in which code is executed.
- Managed using conditional statements and loops.

Conditional statements (if, elif, else)
- Lets you write code that only executes if a certain condition is met; e.g. “if a is equal to b, then do

the following”.
- Formatting is important: there must be a colon at the end of each if/elif/else line, and the

code below must be indented; e.g.:
if first_variable > second_variable:

print("The first value is greater.")
elif first_variable < second_variable:

print("The second value is greater.")
else:

print("The values are equal.")
- Remember that a non-empty string or any number above 0 is “truthy”, so you can use an if

statement to check whether a variable has a “truthy” value; e.g.:
if user_name:

print("Hello, " + user_name)
else:

print("You need to enter a name.")

Code blocks
- Defined by colons and indentation (see “Conditions” above).
- Tells Python what is and is not part of e.g. a condition (if), loop (while or for), or function

definition (def).

The .isnumeric() method
- Checks whether or not the value stored in string is entirely numeric (returns True if all characters

are numeric or False if none or only some are); e.g. the first line below returns True and the
second returns False:
"42".isnumeric()
"42 is the meaning of life".isnumeric()

- Can be used with a variable that contains a string; e.g.:
user_age.isnumeric()



Lesson 5

Functions
- Block of reusable code that performs a specific task.
- There are inbuilt functions—like print() and input()—and you can also define your own.
- Can be named anything that’s not a reserved word and called by its name followed by parentheses.
- New functions are defined using the keyword def, a colon, and indented code block; e.g.:

def print_greeting():
name = input("Name:")
print("Hello, " + name)

Function arguments
- Variable defined within a function’s parentheses (also known as parameters).
- Each time the function is called, the argument can be changed; e.g:

def add_two_numbers(number1, number2):
return number1 + number2

result = add_two_numbers(4, 2)
print(result)

Methods
- Type of function that works with specific objects or data types (e.g. numbers, strings, or lists).
- Followed by parentheses and called by appending it to the object name with dot notation; e.g. the

following checks whether the value stored in variable_name is numeric and returns True or
False: variable_name.isnumeric()

Block scope
- Refers to the accessibility of variables or functions. E.g. if a variable is assigned a value within the

local scope of a function (the code block in which a function is defined), it will only be available in
the parent or global scope (the outer or main code blocks) if the function returns that value.

Return statement
- Returns a value generated or assigned within a function to be used in the parent scope.
- Using return ends the function execution; it should therefore be on the final line of a function’s

code block, as any code below will be ignored.

Refactoring
- Rewriting “messy” or inefficient code into something “cleaner”; e.g. by using functions.

The random.randint() method
- Generates a random integer within a specified range.
- You must first import random to access this feature.
- Range is specified in the function arguments; e.g. the following will return a random number

between 1 and 10: random.randint(1, 10)



Lesson 6

While-loops
- Repeats the code inside the while-loop code block for as long as (while) a condition is True.
- You can make an infinite loop with while True: (this will only stop running if you use the break

command).
- The while-loop code block is signaled by a colon and indentation; e.g.:

while a == b:
print("The values are equal.")

The break command
- Stops a loop running; e.g:

while True:
print("Hello, World!")
break

- Using the return command within a function within a loop also breaks the loop.

The continue command
- Skips the code below and jumps to the top of the loop to start a new iteration; e.g.:

while True:
user_name = input("Name:")
if not user_name:

Continue
else:

Break

The time.sleep() method
- Allows you to introduce a delay into the running of the program.
- You must first import time to use this.
- The delay is given in seconds in the argument of the function; e.g. the following would introduce a

delay of 3 seconds: time.sleep(3)

The len() function
- Counts the length of an object; e.g. the number of characters in a string or the number of items in a

list.
- Outputs an integer, so len("Hello, World!") outputs 13.

Using math and while-loops to create a counter
- You can use basic math to create a counter to count rounds.
- Assign a variable a numeric value and then add or subtract 1 for each round.
- The loop can be set to run until a certain value is reached; e.g.:

counter = 0
while counter < 6:

print(counter)
counter = counter + 1



Lesson 7

Lists (complex data type)
- Stores multiple pieces of data (whether numbers, strings, or other data types).
- Also known as arrays in other programming languages.
- Lists are assigned with square brackets, and list items are separated by commas; e.g. my_list =

[1, 2, 3, 4, 5]
- You can create an empty list by just using square brackets; e.g. my_list = []
- It’s good practice to put list items of longer lists on separate lines and indent for ease of readability.

Selecting list items
- You select a list item by calling the list name with the index number in square brackets; e.g.

my_list[3]
- The index starts at 0, so my_list[3] outputs the number 4 from the following list:

my_list = [1, 2, 3, 4, 5]

Changing list items
- You use the index of the list item to assign a new value; e.g. my_list[0] = "Hello"
- This only works with list items that already exist.

The .append() method (adding list items)
- Adds items to an existing list. E.g. the following would add the integer 42 to the end of my_list:

my_list.append(42)

The .remove() method
- Removes the first instance of a list item via its exact value. E.g. the following removes the first

instance of the number 42 from my_list: my_list.remove(42)

The .pop() method
- Removes a list item via its index number and returns it. E.g. the following will remove the first item of

the list and return it: my_list.pop(0)

Error handling
The practice of writing programs that anticipate, detect, and manage errors or exceptions that may occur
during execution. For example, if user input should be of a certain data type or have certain characteristics
(for example, it should be numerical, or should be a string with at least a certain number of characters), the
program should check for this and display a message to the user to correct the input if necessary. When
writing a program it’s a good idea to test all possible scenarios to make sure that it works as intended.

Using the membership operator (in) with an if-else statement
- Can be used to perform an action only if a certain value appears in a list (or string); e.g.:

pizza_ingredients = ["dough", "tomato sauce", "cheese"]
if "cheese" in pizza_ingredients:

print("This pizza has dairy in it.")
else:

print("There is no dairy in this pizza!")



Lesson 8

For-loops
- Iterates code for each item in a sequence.
- You create a loop variable (or iteration variable) to stand in for each item in a sequence; e.g. the

following code would print the value of each item stored in my_list (but you could use any word
in place of item):
for item in my_list:

print(item)

Tuples (complex data type)
- Like a list, a tuple stores multiple pieces of data (whether numbers, strings, or other data types), but

it is immutable, meaning that the values cannot be changed (unlike lists, which can be changed).
- Tuples are assigned with normal brackets, and tuple items are separated by commas; e.g.:

my_tuple = (1, 2, 3, 4, 5)

Unpacking / Destructuring
- Enables you to extract multiple items from a list, tuple, or dictionary and assign them separate

variables all at once; e.g. the following assigns separate variables to each of the names in the list:
name_list = ["Rowan", "Sam", "Mark"]
first_name, second_name, third_name = list_of_names

The enumerate() function
- Returns a two-item tuple for each item in a sequence that includes the index number and the item

value; e.g:
my_list = ["apple", "banana", "cherry"]
for index, value in enumerate(my_list):

print(index, value)
- The above code outputs:

0 apple
1 banana
2 cherry



Lesson 9

Dictionaries (complex data type)
- Pairs data into keys and values.
- The value in a dictionary can be any data type: strings, numbers, lists, tuples (or even other

dictionaries) and can be changed.
- The key is used to access values; each key must be unique and cannot be changed. It can be any

immutable data type (string, integer, etc.)
- Assigned using curly brackets; e.g. my_dictionary = {} creates an empty dictionary.
- Keys and values are separated by a colon; key-value pairs are separated by commas; e.g.:

dictionary_with_strings_as_keys = {"key_1": 10, "key_2": 20}
dictionary_with_ints_as_keys = {1: 10, 2: 20}

- As with lists, it’s good practice to write dictionary items on separate lines and indent, for ease of
readability.

Selecting dictionary items
- You use the key to access a value in a dictionary.
- This is done by calling the dictionary name and then putting the key name in square brackets; e.g.

dictionary_with_strings_as_keys["key_1"] accesses whatever value is stored in
"key_1" and dictionary_with_ints_as_keys[1] accesses whatever value is stored in 1.

Using for-loops with dictionaries
- Iterates code for each key in a dictionary.
- You create a loop variable (or iteration variable) to stand in for each key in the dictionary; e.g. the

following code prints each key name stored in my_dictionary (but you could use any word in
place of item):
for item in my_dictionary:

print(item)
- To access the values, you use the dictionary name followed by the loop variable; e.g. the following

code prints each value stored in my_dictionary:
for item in my_dictionary:

print(my_dictionary[item])

The .items() method
- Returns each key-value pair in a dictionary as a tuple.

Changing dictionary items
- Access a dictionary item (using the dictionary name and the key name in square brackets) and

assign a new value using the equal sign; e.g: the following code updates the value of
"first_key" to 42:
my_dictionary["first_key"] = 42

Adding dictionary items
- Add a dictionary item (using the dictionary name and the new key name in square brackets) and

assign a new value using the equal sign; e.g: the following code would add a new key-value pair to
the end of a dictionary:
my_dictionary["new_key"] = 42



Removing dictionary items (del command or .pop() method)
- Use the del command with the dictionary and key name to delete a key-value pair; e.g.:

del my_dictionary["first_key"]
- Or use the .pop() method on the dictionary name, with the key name in the parenthesis. This not

only removes the key-value pair, but also returns the value; e.g. the following would remove the
key-value pair stored in "first_key" from the dictionary, and return its value:
my_dictionary.pop("first_key")

Data structures
- Combine or nest different complex data types; e.g. a list of lists or a list of dictionaries.
- Items are accessed by chaining square brackets together with the index number or key name; e.g.

to access the first key of the first dictionary in a list of dictionaries, you would use:
my_list_of_dictionaries[0]["first_key"]


